
On Timely Staging of HPC Job Input Data
Henry M. Monti, Member, IEEE, Ali R. Butt, Senior Member, IEEE, and Sudharshan S. Vazhkudai

Abstract—Innovative scientific applications and emerging dense data sources are creating a data deluge for high-end supercomputing

systems. Modern applications are often collaborative in nature, with a distributed user base for input and output data sets. Processing

such large input data typically involves copying (or staging) the data onto the supercomputer’s specialized high-speed storage, scratch

space, for sustained high I/O throughput. This copying is crucial as remotely accessing the data while an application executes results in

unnecessary delays and consequently performance degradation. However, the current practice of conservatively staging data as early

as possible makes the data vulnerable to storage failures, which may entail restaging and reduced job throughput. To address this, we

present a timely staging framework that uses a combination of job start-up time predictions, user-specified volunteer or cloud-based

intermediate storage nodes, and decentralized data delivery to coincide input data staging with job start-up. Evaluation of our approach

using both PlanetLab and Azure cloud services, as well as simulations based on three years of Jaguar supercomputer (No. 3 in

Top500) job logs show as much as 91.0 percent reduction in staging times compared to direct transfers, 75.2 percent reduction in wait

time on scratch, and 2.4 percent reduction in usage/hour. (An earlier version of this paper appears in [30].)

Index Terms—High performance data management, data-staging, HPC center serviceability, end-user data delivery

Ç

1 INTRODUCTION

THE advent of extremely powerful computing systems
such as Petaflop supercomputers, and the data they can

process such as very high resolution space observations, are
pushing the envelope on data set sizes. For instance, the
large hadron collider [1] or the spallation neutron source [2]
will generate petabytes of data. These large data sets are
processed by a geographically dispersed user base. There-
fore, result output data from high-performance computing
(HPC) simulations are not the only source that is driving
data set sizes. Input data sizes are also growing many fold
[1], [2], [3], [4].

To match the I/O capabilities with the computational
power in an HPC center, a job’s associated input data is
copied or staged to a fast local storage at the center—the
scratch parallel file system—before the job is started. The
use of scratch storage is mandatory, as the alternative of
accessing data remotely while a job is executing on
(typically) large number of resources creates stalls and
wastes precious allotted compute time. Modern applica-
tions usually encompass complex analyses, which can
involve staging large input data using point-to-point
transfer tools such as scp, hsi [5], and GridFTP [6], from
observations or experiments. Moreover, the data sources are
increasingly becoming dispersed as scientists tackle com-
plex problems, for example, near real-time modeling of
adverse weather [7], which depends on distributed sensors.
Thus, input data can originate from multiple sources, for
example, end-user sites, remote archives (HPSS [8]),
Internet repositories (NCBI [9], SDSS [3]), collaborating

sites and other centers that run pieces of the job workflow.
Therefore, HPC data management is the focus of active
research [5], [6], [10], [11], [12], [13], [14], [15], [16], [17], [18],
[19], [20], [21], [22], [23] (see Section 1 supplementary
material, which can be found on the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TPDS.2012.279).

Upon submission, a job waits in a batch queue at the HPC
center to be scheduled, while the input data “waits” on the
scratch space. HPC centers are heavily crowded and it is not
uncommon for a job to spend hours—or even days on
end—in the queue. In the best case when the data is staged
at job submission, job completion time, i.e., ðwall time þ
wait timeÞ, is also the time the input data spends on the
scratch space. In the worst case, which is more common,
the data wait time is longer as users conservatively stage the
data much earlier than even job submission. Alternatively,
users may also include data movement in the job scripts,
which forces the allocated cores to wait for the data to be
brought in from remote resources. The time thus wasted is
commensurate to #cores � time to stage in the input data,
and is significant in typical allocations.

Scratch space is expensive—costing millions of dollars
for state-of-the-art supercomputers, for example, Jaguar’s
[24] scratch storage has 14,000 disks, 192 object storage
servers, 1,300 object storage targets, and 48 controller
pairs—and consumes a notable fraction of the HPC center’s
operations budget. More importantly, scratch space is meant
for currently running or soon to run jobs. This usecase
precludes simple scratch space management policies, for
example, quotas or charging for space usage are rarely used
so that currently running jobs will not fail due to lack of
space. However, from a center standpoint, suboptimal use
of scratch space could impact the center’s serviceability, i.e.,
the ability to serve more incoming jobs. That is why, even
with huge scratch space capacities, supercomputer admin-
istrators constantly trim usage through purge policies and
weekly reminders to users to move their data from scratch
storage. From a user standpoint, the input data is exposed to
potential unavailability due to storage system failure [25],
[26], [27] while it is waiting on the scratch storage.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 24, NO. 9, SEPTEMBER 2013 1841

. H.M. Monti and A.R. Butt are with the Department of Computer Science,
Virginia Tech, 2202 Kraft Drive, Blacksburg, VA 24061.
E-mail: {hmonti, butta}cs.vt.edu.

. S.S. Vazhkudai is with the Oak Ridge National Laboratory, One Bethel
Valley Road, PO Box 2008 MS6016, Oak Ridge, TN 37831.
E-mail: vazhkudaiss@ornl.gov.

Manuscript received 28 Oct. 2011; revised 29 Apr. 2012; accepted 10 Sept.
2012; published online 21 Sept. 2012.
Recommended for acceptance by X.-H. Sun.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number TPDS-2011-10-0802.
Digital Object Identifier no. 10.1109/TPDS.2012.279.

1045-9219/13/$31.00 � 2013 IEEE Published by the IEEE Computer Society

Consequently, when the job is started, crucial pieces of input
data may be unavailable, requiring a rescheduling (delay on
the order of hours to days). What is needed is a framework that
enables timely staging of large input data sets for jobs.

1.1 Design Challenges

Staging the data to be coincident with job startup, i.e., just-in-
time (JIT), is challenging. First, we need to know when the
user’s job will commence. This has been explored extensively
[28], [29], and HPC schedulers (e.g., PBS Pro [10], Moab [11])
can also provide a batch queue wait time estimate based on
current and historical (jobs with a similar profile) data.
However, a simple and direct use of batch queue predictions
in JIT staging is not appropriate due to sudden changes in
schedules. For example, an unexpected failure can cause a
10,000-core job to suddenly exit, resulting in many jobs being
promoted to “ready to run” state, all too quickly.

Second, we need an estimate of how long the data
staging would take from the input locations to the HPC
center. We need continuous bandwidth measurements so
they can be factored in to revise the route dynamically and
adapt to changing network conditions. The upshot is that
both the queue wait time estimates and network band-
width estimates are volatile and “soft.” Consequently, our
staging solution needs to be resilient to adapt to these
transient conditions.

1.2 Contributions

This paper makes the following contributions:
Timely data staging framework. We present a JIT staging

framework that attempts to have the needed data available
at scratch storage just before the job is about to run. To this
end, the framework reduces the data copying time to the
scratch storage by proactively bringing the data to inter-
mediate storage locations on the path from the end-user site
to the HPC center.

Integration of HPC job management and decentralized data
transfer systems. We employ an innovative combination of
high-efficiency data dissemination (BitTorrent [31]) and
network monitoring (NWS [23]) to exploit orthogonal,
residual bandwidth and to dynamically adapt to network
volatility, respectively, to improve overall scratch space
utilization. Further, the overarching unique goal of our
work is to reconcile scratch space consumption with
volatility (both network and storage) and timely staging,
which is in contrast to existing works on decentralized
transfers [12], [32], [33], [34], [35].

Use of cloud storage in HPC. We adapt our JIT staging to
exploit cloud resources as intermediate storage when
available. We demonstrate our solution using Azure [36].

Multipronged evaluation. We evaluate our solutions using
both real-world experiments on Azure [36] and PlanetLab
[37] as well as extensive simulations using three years worth
of job logs from the ORNL Jaguar supercomputer [24].

2 DESIGN

In this section, we describe the goals and the main design of
JIT staging, with additional discussion of alternative designs
provided in Section 2 of the online supplementary material.

2.1 Objectives

1. Timely delivery of input data. Our primary goal is to
deliver application input data to center local storage

from multiple sources JIT, in the face of both
transient network conditions and changing batch
queue job wait times. Not properly accounting for
such dynamism can have adverse effects on the
staging framework: data delivery is delayed, and
consequently job turnaround time is increased.

2. Minimize transfer times. The ability to minimize
transfer times by choosing optimal routes and
constantly re-evaluating them is critical for reacting
to changes. For instance, this can help handle
sudden tightening in the delivery deadline due to
an unexpected cancellation of a large job.

3. Reduce duration of scratch space consumption. From a
center standpoint, it is desirable to stage the data of a
waiting job as late as possible so that the scratch
space is available for all of the currently running
jobs’ I/O. Thus, if the waiting jobs’ duration of
scratch usage is reduced, it would help the HPC
center better service the currently running jobs.

4. Reduce exposure window. Another downside of sta-
ging the data early is its exposure to potential
storage system failure. We refer to the time elapsed
between when data is staged until the associated job
starts running as exposure window, Ew. To protect
against storage failures, it is desirable to minimize
Ew, preferably as close to 0 as possible. We have
shown that minimizing Ew is crucial [15], [30] as disk
failure is the norm and not an exception in large
supercomputers with tens of thousands of disks. For
example, supercomputers such as Jaguar, ASCI Q,
ASCI White, and PSC Lemieux all cite storage as a
primary reason for system downtime with MTBF of
37.5, 6.5, 40, and 6.5 hours, respectively [38].

5. Avoid starvation. Finally, the job scheduler should not
become idle because the input data of a waiting job
has not been completely staged, as it affects center
serviceability.

2.2 Architecture

Fig. 1 shows the high-level system overview, and illustrates

interactions between our framework components.

2.2.1 Intermediate Nodes

Our framework uses intermediate nodes (Nis) that can
provide temporary storage for data on the path from the
source to the HPC center. The intuition behind using Nis is
that nodes closer to the center than the user site can support
faster data transfers for staging and reduce staging times.
This provides for delaying the staging to much later than
when using a direct transfer, which also reduces Ew.

2.2.2 Queue Prediction as Staging Deadline

In our design, the HPC center is expected to support a batch
queue prediction service (e.g., NWS batch queue prediction
[39]), which the users can query before submitting their jobs
to get an estimate of queue wait times. Scheduling based
on queue wait times is already popular in TeraGrid [17]
supercomputer centers. In fact, modern resource managers
(e.g., Moab [11]) are beginning to provide services that
would enable users to query and obtain start times of
queued jobs. The prediction service can usually provide

1842 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 24, NO. 9, SEPTEMBER 2013

both wait time estimates as well as the probability of a job
starting by a user-specified deadline [39]. In cases where
direct wait time predictions are unavailable, the user
can pose a query to the service, with a deadline, and
determine the likelihood of the job starting by the deadline.
A 90 percent or higher probability indicates an affirmation
of the user-specified deadline and can be used as the job
startup time and, consequently, the staging deadline.
However, this deadline is only an estimate as jobs can start
earlier due to prediction inaccuracies or other jobs’ failures.
To accommodate this, we let the staging manager allow the
user tweak the estimate by up to a fixed factor, f , moving
the deadline earlier [30].

2.2.3 Timely Staging Algorithm

Once a deadline for completing the input data staging is
determined, the user submits a job script to the staging
manager at the center with a description of the job and
other details necessary for timely staging. The script
includes attributes such as the user-adjusted job startup
deadline, the set of intermediate nodes, <Ni; Pi>, where Pi
denotes the usage properties of the intermediate node Ni,
for the decentralized staging process, and the sizes and
locations of the input data sets, Dj. The staging manager
also takes as input the current snapshot, BWi, of the
observed NWS bandwidth between the HPC center and Ni

as well as between the Nis themselves. While we currently
use bandwidth snapshots, we note that our model is
independent of a specific network “distance” metric and
can work with other possible metrics. This could include
bandwidth, latency, as well as considerations such as out-
of-band agreements.

Algorithm 1 shows the pseudocode for the JIT staging
manager. The manager reconciles the predicted job start
deadline with the user-adjusted one to determine if it can
allow the user’s tight deadline. This reconciled deadline is
denoted by TJobStartup. Based on these parameters, the
manager decides upon a data staging schedule, Xj, for
each Dj, which delivers the data set in time, Tj ¼
MinðDirectTransfer;DecentralizedTransferÞ. To estimate
these times, the manager uses the measured available
bandwidth to the user site as well as the intermediate
nodes. To create a distributed schedule, the intermediate

nodes are sorted based on available bandwidth and then
the number of nodes to which data is sent is increased until
overall transfer times that are better than a direct transfer
(if possible) can be achieved. This choice is dictated largely
by the available bandwidth and storage at the intermediate
nodes. When the intermediate nodes can provide a faster
transfer, a decentralized transfer is scheduled. Each data set
could come from a variety of sources, including those
wherein our decentralized transfer software cannot be
installed. In such cases, the manager relies on JIT probes to
the data source to judge if a direct transfer to the HPC
center is most appropriate. Alternatively, such input data
could also be transferred through the intermediate nodes by
having the edge-level nodes pull the data from the source,
enabling decentralized staging.

Algorithm 1. The timely staging algorithm.

Job ¼ CreateJobScriptð<Ni; Pi>;Dj; BWiÞ
TPredict ¼ GetJobStartUpPredictionFromBQP ðJobÞ
TJobStartup ¼ManagerReconcileðJob; TPredict; f)

for Each Dj do

Determine Xj such that:
Tj ¼MinðDirectTransferj;DecentralizedTransferjÞ
ScheduleTransferðTjÞ

end for

repeat

BW 0
i ¼ GetNWSUpdateðBWiÞ

T 0JobStartup ¼ GetBQPUpdateðTJobStartupÞ
for Each Tj do

T 0j ¼ RecalculateðTj;<Ni; Pi; BW
0
i>Þ

if T 0j > T 0JobStartup then

Increase the Fan� in
end if

end for

until Staging Completes

The multi-input staging should obviously also complete
before job startup and should satisfy the property,
MaxðTjÞ � TJobStartup. Minimizing transfer times by choosing
the intermediate nodes with the best available transfer rates
helps achieve this goal. At the same time, each input staging,
Xj, is also started as late as possible to reduce the duration of
scratch space consumption and, consequently, the exposure
window, Ew of the data sets. The exposure window for each
input data set is: Ewj ¼ TJobStartup � Tj. Then, total exposure
of all input data is, Ew ¼ SumðEwjÞ. The closer Ew is to 0, the
better. Thus, the ideal start time for each input data set is
the one that achieves, TJobStartup � Tj ¼ 0. In practice, how-
ever, a small difference is desirable to safeguard against
unexpected delay. This approach factors in both timely
delivery as well as scratch space usage optimization.

2.2.4 Re-Evaluating Staging Decisions

Even after a particular course of action, for example,
decentralized transfer, is chosen, the manager periodically
re-evaluates the staging (Algorithm 1) based on an updated
<Ni; Pi; BW

0
i>, where BW 0

i is the latest snapshot of
bandwidth measurements. If the re-evaluated time to
staging, T 0j , satisfies the property, T 0j > TJobStartup, then,
alternate (available) routes are taken to stage the data
before job startup, enabling us to meet the staging deadline.

MONTI ET AL.: ON TIMELY STAGING OF HPC JOB INPUT DATA 1843

Fig. 1. Overview of the timely staging framework, and interactions
between the components.

In addition to re-evaluating the network routes based on
updated bandwidth measurements, the staging manager
also has to account for batch queue status changes
discussed earlier. We address this by having the manager
periodically obtain new estimates T 0JobStartup from the batch
queue service. If the staging schedules reflect that Tj >

T 0JobStartup, then alternate routes are evaluated to ensure
timely delivery. A side effect of this is the prevention of job
scheduler starvation due to inability to schedule jobs as a
result of unfinished stagings.

2.3 Supporting Timely Staging

Once the data staging is initiated, the client chooses a set of
nodes from Nis ordered by available bandwidth. Fig. 2
shows the data flow from end-user site to the HPC center.
These chosen Nis serve as the Level-1 intermediate nodes.
The manager monitors the bandwidths periodically (using
NWS) and vary the selected Nis. Next, the input data is
split into chunks and parallel transfer of the chunks to
Level-1 nodes is initiated. The transfer may also involve
further levels of intermediate nodes (up to Level-N). The
choice of the number of levels of intermediate nodes is left
to the users, and does not have a direct bearing on the
center to Level-N node performance that is critical for our
design. The levels simply enable users to provide multiple
data-flow paths to the center, and we foresee the levels to
be not more than two in typical scenarios. Additionally,
depending on the availability of intermediate nodes, the
client can also stage the data to Level-N nodes much earlier
than the deadline.

As the job startup deadline approaches, the proximity of
the Level-N nodes to the center allows them to quickly
move the input data to the center’s scratch space. The JIT
manager can vary the fan-in, i.e., the number of Level-N
nodes from where to simultaneously retrieve data. The
cardinality of the fan-in is chosen to stage all the necessary
data before the predicted job start time (Algorithm 1). The
fan-in is expanded until the deadline can be met or until no
more nodes can be added. The goal is to obtain the best
possible transfer time given the intermediate nodes and job
deadline. Also, this design allows the Level-N nodes to
stage the data at peak (prespecified) bandwidth at the most

appropriate time without worrying about the availability
(and connection speed) of the submission site (see Fig. 2).

Intermediate nodes provide multiple data-flow paths as
well as several alternative options for data delivery. For
instance, data may be replicated across different Nis during
the transfer from one level to the other. This lets the center
to pull data from a number of locations for fault tolerance.

The amount of data transferred between the intermediate
nodes will vary depending on the number of nodes used
and the above parameters, as well as the network condi-
tions at the time of the transfer. However, as stressed
earlier, the intermediate nodes are provided by collabora-
tors (e.g., as in TeraGrid or ESG) that already have an
interest in seeing the job succeed, and any overhead due to
retransmissions between intermediate nodes can be con-
sidered as necessary to this end.

2.4 Discussion

2.4.1 Cloud Resources as Intermediate Nodes

The emerging cloud model can also provide resources for
the intermediate sites of our JIT staging. In fact, cloud
resources can act as always available geographically
distributed locations, landmark nodes. A number of cloud
features make it suitable for an intermediate staging area.
First, the cloud resources are scalable, distributed, and
robust, for example, Windows Azure allows blobs (binary
large objects) each of up to 50 GB at present [36]. Second,
the cloud can provide very high data reliability guarantees
through replication, geographically distributed storage, and
active fault ramifications. This relieves both HPC centers
and end users from expensive data redundancy improving
operations. Third, data can be strategically placed in the
cloud, i.e., relatively close to an HPC center or end-user,
yielding potentially higher transfer rates and lower latency
when the data is needed. This is further enhanced if the
cloud service provider supports content distribution net-
works (CDNs). Finally, the cost of utilizing cloud storage
resources is very low compared to the multimillion dollar
storage systems at HPC centers. This is especially useful for
ephemeral collaborations and shorter term projects. In our
own work [40], we found that there is a broad range of jobs
for which cloud storage and transfer costs are reasonable,
especially for a collaboration with several researchers. We
further examine the costs of cloud storage Section 3.1.3.

However, using the cloud as an intermediate storage
location also has some disadvantages that are addressed by
intermediate nodes in this work. First, while the cloud
offers many features that can potentially improve perfor-
mance for data transfers, these are typically static and
inflexible (e.g., storing data in the cloud near the HPC
center beforehand), or do not match typical HPC workloads
(e.g., a CDN requires multiple accesses for improving
performance and staging in of job input data does not
benefit from this approach). Second, the cloud is a black box
and to achieve our goals we must infer through benchmarks
and other probes how it will behave under different
circumstances, and how to get the best performance for
the HPC use-case. For instance, a group of user provided
intermediate storage locations are significantly more con-
figurable than a cloud storage location.

1844 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 24, NO. 9, SEPTEMBER 2013

Fig. 2. The data flow path from the client site to the HPC center.
Each intermediate node (hexagon) runs NWS (gray square) for
bandwidth monitoring.

3 EVALUATION

In this section, we present an evaluation of our timely data
staging using: 1) an implementation (Section 3 of the online
supplementary material) running on the PlanetLab testbed
[37]; and 2) an HPC center data-subsystem simulator,
simStagein (Section 4 of the online supplementary material),
which is driven by three-year job logs from the Jaguar [24]
supercomputer. We also compare our JIT staging to
commonly used direct transfer techniques for staging input
data in HPC centers. Additional results can be found in
Section 5 of the online supplementary material.

3.1 Implementation Results

First, we use the PlanetLab [37] testbed to study the
effectiveness of our decentralized staging in a true
distributed environment. We chose 20 PlanetLab nodes
arranged in a tree-structure: one as the client site and root of
the tree, one as the HPC center, 10 and 8 Level-1 and Level-2
nodes (see Fig. 2), respectively. Table 1 shows the average
bandwidth observed between the nodes during the course
of our experiments. Our results represent averages over a
set of three runs.

3.1.1 Decentralized JIT Staging versus Direct Transfer

In this experiment, we compare our decentralized JIT
staging to several point-to-point direct transfer tools that
are prevalent in HPC: 1) scp, a baseline secure transfer
protocol; 2) IBP [19], an advanced transfer protocol that
makes storage part of the network, and allows programs to
allocate and store data in the network near where they are
needed; and 3) GridFTP [41], an extension to the FTP
protocol, which provides authentication, parallel transfers,
and allows TCP buffer size tuning for high performance;
and BBCP [42], which also provides high performance
through parallel transfers and TCP buffer tuning. Note that
these protocols are all typically supported [43] by HPC
centers such as Jaguar [24].

For this experiment, we used a range of file sizes from
1 GB to 5 GB (limited by PlanetLab policies), and measured
the time for each direct transfer method between the center
and the submission site. For JIT staging, we used a
combination of BitTorrent and NWS as outlined earlier.

Table 2 shows the times for the direct data transfer
techniques from client to HPC center (scp, IBP, GridFTP,
BBCP), from client to Level-1 nodes (Client Offload), and
from Level-2 to the center (Center Pull). Compared to a
direct transfer, decentralized staging can potentially reduce
the last-hop (equivalent to Center Pull) transfer times by
91.0 and 91.0 percent for scp and by 83.9 and 83.4 percent
for GridFTP, for 1 GB and 5 GB data sizes, respectively.

This implies that the decentralized staging can poten-
tially delay copying of data to scratch space by a factor of
11.0 for scp and 5.9 for GridFTP, on average, across the
studied file sizes, and still get the data to the center in time
for the job to start on time. Thus, JIT staging reduces the
time the scratch space has to hold the data, consequently,
reducing the exposure window (Ew), and improving center
serviceability.

The reported Center Pull time represents the time to
transfer the file from Level-1 and Level-2 nodes to the
center, and does not include the transfer time from the
source. However, the Center Pull is asynchronous, and can
start as soon as chunks begin to arrive at Level-2 nodes. We
note that the overall transfer time, i.e., the time from when
the source starts sending the data to when the center has
received all the data is not a suitable metric, as our
approach allows the center to delay starting the pull as
necessary. However, the earliest time the center can get the
input data is still a useful metric. In our system, the center
can start retrieving the data as soon as the client has
offloaded it to Level-1 nodes. Thus, the Client Offload times
reported in Table 2 also serve as the earliest data availability
metric, and as stated earlier, are significantly better in our
approach compared to a direct data transfer.

3.1.2 Explicit Intermediate Nodes versus Cloud-Based

Transfer

For our next experiment, we compare our JIT staging under
two scenarios: with explicit non-cloud intermediate nodes,
and with a cloud-based data transfer service, CATCH [40],
that we have extended from our prior work to be aware of
job deadlines. CATCH uses cloud resources, specifically
Microsoft Windows Azure [36] cloud storage.

We transferred a 1 GB file using our JIT staging service
both with explicit intermediate nodes and CATCH.
CATCH utilized 16 streams when transferring data
between the cloud and the HPC center. Table 3 shows
the result. Both of these numbers assume the data has
already been stored either in the cloud or at the inter-
mediate nodes, so only the time to transfer to the center is
considered. In these experiments, explicit staging performs
significantly better than a Read (Center Pull) operation
when using CATCH. However, this does not imply that JIT
staging using explicit intermediate nodes is always better.
For example, the cloud provides reliability guarantees and
performance SLAs. Additionally, this experiment assumes
there are a sufficient number of available collaborators to
support the explicit intermediate nodes, with reasonable

MONTI ET AL.: ON TIMELY STAGING OF HPC JOB INPUT DATA 1845

TABLE 1
Average Observed Bandwidth between PlanetLab Nodes

during Experimentation

All numbers are in Mb/s.

TABLE 2
Comparison of Decentralized Transfer Times with Different

Direct Transfer Techniques

The buffer size for IBP, GridFTP, and BBCP is set to 1 MB. The number
of streams in GridFTP and BBCP is set to 8 and 16, respectively.

amounts of bandwidth, which may not always be the case.
To test this case, we repeat the explicit staging experiment
with only half the intermediate nodes, i.e., four nodes. In
this case, we observe CATCH performs better than explicit
intermediate nodes. CATCH can provide reasonable
performance especially when compared to the direct
transfer mechanisms and in cases where reliability or the
lack of collaborators is an issue. These results suggest that
both approaches are viable options for HPC end-user data
staging under different scenarios.

3.1.3 Cost of Cloud Usage

In the next experiment, we determine how the cost of cloud
services impact CATCH usage. Table 4 shows the current
pricing structure of Azure [44]. Table 5 shows three
different usage scenarios for HPC application workflows,
and the cost of using CATCH for the applications. Note that
Azure currently provides free inbound data transfers,
which is useful in large scientific projects since it would
enable many users to inexpensively upload and modify
data collaboratively. This data could then be staged to an
HPC center only when needed. Moreover, it is not
uncommon for large cloud customers such as an HPC
center to receive lower/bulk rates, for example, Netflix
using Amazon EC2 [45].

To give a sense of the scale of the job that produces
terabytes of data, consider that a 100,000-core run of GTS
fusion application on Jaguar produces a 50 TB data set.
Since the pricing for cloud usage is expected to fall, the
Table also shows the cost of using CATCH if the prices are
reduced by 10, 50, and 90 percent. In contrast, consider that
in a typical HPC center, the I/O subsystem costs can
account for 20 to 30 percent of the acquisition cost and may
run into millions of dollars. Even though the acquisition

cost is amortized over the life of a machine, the annual
running costs can still run into millions of dollars.
Information about exact HPC center acquisition and
maintenance costs are confidential, and are not made
public, thus precluding a direct comparison to CATCH.
However, we examine some reasonable estimates (based on
our interactions with HPC center managers) in Table 6. We
consider a large HPC facility with a 10 PB scratch space and
a 5-year life span, and compare three different design
choices. We assume 10 percent of the upfront costs as yearly
maintenance costs. We note that although the amortized per
GB cost can be low, it does not scale with volume. For
instance, provisioning a scratch with 50 percent more
capacity requires specialized nonstandard hardware to
support additional disks, controllers, and so on, not to
mention other IT and infrastructure upgrade costs, which
would increase the cost per GB by several orders of
magnitude, rendering the option ineffective. Moreover,
such infrastructure cannot robustly support dynamic work-
loads, especially for distributed users. While PFS storage is
needed at the center for a quick dump of job data, it cannot
retain the data beyond a purge window, let alone the
duration of a collaboration. Thus, cloud storage can
complement storage at the HPC center. What this exercise
illustrates is that the HPC center cannot arbitrarily provi-
sion the scratch space for dynamic collaborations that may
wish to retain TBs of data for the duration of the
collaboration. In these cases, it is only fair that such
collaborations pay for the cost, rather than having the
HPC center pay the price. Moreover, cloud storage can
support such collaborative data access more economically
than HPC center storage.

3.1.4 Multi-Input Staging

Next, we study the ability of our decentralized staging to
accommodate input data from multiple sources. We
consider three configurations, as shown in Fig. 3, with two
sources (X and Y) of data in addition to the client site (S). In
I, the data from all sources is staged in a decentralized
manner. This captures retrieving data from slower external
sources. In II, we consider fast external sources, for example,

1846 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 24, NO. 9, SEPTEMBER 2013

TABLE 3
Comparison of JIT Staging Using Explicit Intermediate Nodes
with CATCH’s Cloud-Based Nodes, While Transferring 1 GB

CATCH used 16 streams in this experiment.

TABLE 4
Current Azure Pricing

TABLE 5
Cost of Using CATCH for Different Workflows under

Varying Pricing Structures

TABLE 6
Cost of Provisioning a 10 PB Scratch Space under

Differing Cost Structures

Fig. 3. Configurations used in multi-input test.

online data repositories [9] so the center can directly retrieve
from them. Finally, in III, the intermediate nodes may
already have the data, such as collaborating sites in
TeraGrid jobs [17]. For each case, we compare scp and
GridFTP from the sources to that of our staging. Table 7
shows the results. It is observed that decentralized staging is
able to handle multiple sources, and has the potential to
outperform the direct transfers by 79.3, 90.8, and 80.9 percent
for scp and 65.3, 83.3, 63.6 percent and for GridFTP, in
scenario I, II, and III, respectively. In real transfers, the
various configurations will switch depending on the
transfer rates and staging deadlines.

3.1.5 Behavior under Failures

Improved transfer times are key to JIT staging, and thus
reducing scratch space usage times. In the following set of
experiments, we study how failures will affect the transfer
times under our framework.

First, we examine intermediate node failures. We focus
on our decentralized staging, as a failure under direct will
result in the data transfer not completing by job startup
time, consequently leading to obvious job rescheduling.
Fig. 4 shows transfer time achieved by our approach under
various failure scenarios, normalized to direct transfer
time. We failed two intermediate nodes under three
different scenarios: two Level-1 nodes fail, a Level-1 and
a Level-2 node fail, and two Level-2 nodes fail. In this test,
the number of replicas at each level is set to 3. The system
tolerates two Level-1 failures, i.e., 20 percent of Level-1
nodes, with negligible affect. A failure at Level-2 increases
the transfer time somewhat (by a factor of 1.3), but two
Level-2 failures are significantly more disruptive (time
increases by a factor of 2.7). However, this is an extreme
case with 25 percent of the Level-2 nodes failing. On the
plus side, the transfer time, even with these failures, is less
than half (41.2 percent on average) that of the direct

transfer. Furthermore, our flexible design can easily
accommodate extra replicas to improve fault tolerance, as
observed by the reduction of transfer times for each of the
Level-2 failure cases when one extra replica is used. This
experiment shows that the dynamic rerouting of our
approach can adapt to the changing network conditions
and ensure meeting the staging deadline with minimal
delays, if any. Moreover, the use of a flexible routing path
between the client site and HPC center allows for
offsetting delays due to intermediate node failures. More-
over, error coding [46] at the source can provide an
additional layer of safety, and along with replication
through multiple data flow paths can provide good fault
tolerance for the staging process.

3.2 Log Analysis

In this section, we examine the three-year Jaguar [24]
supercomputer job logs in depth to gain information that
can improve the implementation of our JIT staging service.
Table 8 shows some relevant characteristics of the logs.

3.2.1 Comparing Actual and User-Estimated Job

Runtimes

First, we examine the accuracy of user-estimated runtimes,
as many works [47] have noted that users generally request
more resources than required by their jobs. Fig. 5 plots the
user requested runtimes with the actual runtimes as
recorded in the logs, and confirms this perception. Across
the logs, the users overestimated the requirements by
50.9 times, on average, for jobs longer than 30 seconds
(430 times for all jobs), mostly due to jobs ending prema-
turely. Some of this discrepancy may be due to errors
encountered by users while running their jobs, which is
pertinent information for our staging service. Nonetheless,
much of the difference appears to be users being cautious in
specifying requirements, mainly to ensure that their job
completes regardless of any transient issues that may occur
at the HPC center. As stated earlier, this overestimation
works against our overall goals, since we would like to stage
user data to the center as late as possible.

MONTI ET AL.: ON TIMELY STAGING OF HPC JOB INPUT DATA 1847

Fig. 4. Normalized transfer time wrt. direct transfer as different
combinations of Level 1 (L1) and Level 2 (L2) nodes are failed.

Fig. 5. The actual and user predicted runtimes for each job in the logs.
Users typically request significantly more wall time than necessary.

TABLE 7
Comparison of Multi-Input Data Transfer under Direct and

Decentralized Staging

TABLE 8
Statistics About the Job Logs Used in the Simulation Study

A complementary way of examining actual and user-
predicted runtimes is to consider the ratio of actual and
user-predicted job runtimes, or R value. The R values can
be used to predict accurate job runtimes from user-
predicted runtimes [47]. Fig. 6 shows the R values for the
studied trace, classified into 10 bins. For example, the 0th
bin represents an R value of 0.0 to 0.09, and is equivalent to
a job using 0 to 9 percent of its requested time. We observe
that most jobs do not run for their requested runtime. For
example 32.3 percent jobs use less than 10 percent, and
63.5 percent use less than 50 percent, while only 16.4 percent
use more than 90 percent of the requested allotment. There
are also a small (but significant) number of jobs that use
more than 100 percent of their predicted time. We presume
that these are either completed jobs that spend a few extra
seconds freeing resources, or jobs that have encountered
errors. Out of 10,584 (13.2 percent) jobs that use more than
their allocation, 890 run 2 minutes past the requested
allocation time and only 141 run 5 minutes past the
requested allocation time.

3.2.2 Examining Trends in Queue Wait Times

In Section 2, we discussed using a batch queue prediction
service to provide staging deadlines, however, the estimates
provided by these services are primarily estimates of jobs’
queue wait times. Queue wait times are particularly
important to our JIT staging as a job must have sufficient
queue wait time left for the required data to be staged in on
time. Moreover, understanding the relationship between
queue wait time and other important center metrics could
provide further insights for refining the design parameters
of JIT staging.

First, we examine how a job’s input data size is
associated with queue wait times. Fig. 7 shows the result
for queue wait times ranging from under 5 minutes to over
1 month. It is observed that the average input data size
grows slower than the queue wait time. For example, a job
that spends 3 hours waiting in the queue has an average
input data size of 62.2 GB, while a job that spends 6 hours
(100 percent increase) in the queue has an average of
31.8 percent more input data or 82.0 GB. This trend is
similar at longer queue wait times as well.

However, a fundamental assumption in our analysis
and simulations is that the input data sizes = num cores *
memory used. Larger jobs frequently mean more cores and
memory, but they may not always mean more data. Jobs
can simply be large simulations that use very little data but
produce large outputs. On the contrary, data analysis jobs
are usually not that large in terms of cores and memory,
but consume large amounts of input data. Unfortunately,
the information in the job logs does not allow making this
distinction. Nevertheless, the logs suggest that for medium
to large sized jobs, enough time is spent waiting in the
queue before running to provide an opportunity to do JIT
staging of job data.

Second, we examine the association of queue wait times
and center utilization expressed as a fraction of total node
hours as shown in Fig. 8. Here, the node hours are defined as
walltime � number of nodes. For these logs, jobs that spend
long periods of time waiting in the queue use significant
center resources. The single bin with the largest amount of
node hours used is <1 week (longer than 1 day) with 17.8 m
node hours or 27.4 percent of the total center utilization.
Another observation is that jobs that spend more than
12 hours in the queue account for 62.1 percent of the overall
utilization of the center, even though they only account for
21.5 percent of all jobs. This analysis suggests that jobs that
use significant resources are also the ones most able to take
advantage of our JIT staging service.

Finally, a range of important trends relating to queue wait
time, such as runtime, and average utilization are plotted in
Figs. 9, 10, 11, and 12. We note that these trends may not be
applicable for other logs and HPC installations, but provide
useful insights in realizing a JIT data staging service.

1848 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 24, NO. 9, SEPTEMBER 2013

Fig. 7. The effect of queue wait time on average input data size. Each
bin value represents the maximum noninclusive wait time for jobs in
that bin.

Fig. 8. The effect of queue wait time on utilization (node hour). Each bin
value represents the maximum noninclusive wait time for jobs in that bin.

Fig. 9. The number of jobs in each bin.

Fig. 10. The effect of queue wait time on average job runtime.

Fig. 6. The R values for each job in the trace grouped into 10 bins. Each
bin represents the fraction of the requested wall time actually used.

3.2.3 Quantifying the Effect of Unexpected Job Failures

Unexpected job failure may cause jobs waiting in the queue
to start executing immediately, (much) earlier than their
planned/predicted start times. Such unexpected job execu-
tion poses potential problems for JIT staging, as the staging
of a job’s associated data may have not yet completed. In
this experiment, we analyze the job logs to quantify the
impact of unexpected job failures by measuring both how
frequently they occur and how much time the waiting jobs
spend in the queue prior to running.

We step through the logs and examine each job
individually. If a job does not use its entire requested
allocation, we treat it as a potential failure, and observe all
of the subsequent newly running jobs that start in a short
time window after the initial failure. The time windows
examined range from 30 seconds to 5 minutes. This
approach assumes that every job starting in the time
window was directly affected by the failing job and is
likely to overestimate the number of new jobs. We count the
total number of jobs affected by failures and the average,
maximum, and minimum number of new jobs per failure.
The results of this analysis are shown in Table 9. Since each
job is examined individually, there is the potential to count
the same new job multiple times. To quantify the impact of
such duplication, we also included the “Absolute Total,”
which removes any duplicate jobs that have been counted
several times. On average, each job failure causes only a few
new jobs to start unexpectedly, from 1.52 to 4.09 jobs.
However, for the larger time windows, there can be up 210
new jobs that appear to be affected. Overall, anywhere from
11.8 to 36.9 percent of all jobs can be affected by job failures,
depending on the time window.

We also examined the amount of time jobs spend in the
queue and the input data sizes to see how much
opportunity there is for our JIT staging service. The results
can be seen in Table 10. The analysis converges to the top
and bottom values quickly for both queue wait time and
input data sizes. The average queue wait times range from
303.4 to 341.2 minutes, while the average data sizes range
from 66.4 to 70.4 GB. It seems unlikely that these are general
results, but they emphasize that a JIT time staging service
must be able to handle job failures.

3.3 Simulation Results

In this section, we use the job logs discussed above to study

the performance of timely staging using simStagein.

3.3.1 Impact on Scratch Space Usage

In this experiment, we quantify the impact of timely staging

on scratch space usage. We play the logs in our simulator

and determine the amount of scratch used both under direct

and timely staging. For this test, we assume that the scratch

is empty at the beginning, and use perfect batch queue

prediction. Moreover, the center is setup for weekly purges

of the scratch space and the maximum center in-bound

bandwidth is limited to 10 Gb/s. Only input data is

considered, and a data item is only purged if its associated

job has completed. Fig. 13 shows the instantaneous savings

in scratch space usage by timely staging compared to direct,

measured every 10 minutes. The instantaneous savings

(associated with a job input data) become zero as the job

startup time approaches, as timely staging has to bring in

the necessary data. A more representative aspect is the

average savings over a period of time, as it captures not

only the savings but the duration for which the savings

were possible. Therefore, we also show the average savings

calculated per hour. Finally, we calculated the average

savings per hour across the entire log, and found that

staging potentially uses 2.43 percent less scratch per unit of

time (e.g., 24.9 GB/hour on average per Terabyte of storage)

compared to direct. Thus, timely staging is a promising way

for conserving precious scratch resource.

MONTI ET AL.: ON TIMELY STAGING OF HPC JOB INPUT DATA 1849

TABLE 9
The Number of Jobs Impacted by Unexpected Job Failures

Fig. 13. Scratch savings under timely staging compared to direct. Purge
period is seven days.

Fig. 11. The effect of queue wait time on the average number of nodes
used for a job.

Fig. 12. The effect of queue wait time on average utilization (node hour).

TABLE 10
Input Data Size and Amount of Queue Wait Time of Jobs

Affected by the Failure of Other Jobs

3.3.2 Effect on Exposure Window

In this experiment, we repeat the previous experiment, but
now study the exposure window (Ew), i.e., duration for
which the data has to wait on the scratch before the
associated job is run. Fig. 14 shows the observed Ew under
direct and timely staging, for each job in our log, arranged
in ascending order. In this experiment, timely staging can
potentially reduce the Ew of 30.7 percent of the jobs to zero,
and for the remaining jobs it was capable of reducing Ew by
64.2 percent, i.e., 75.2 percent reduction on average across
all jobs. Moreover, we found that Ew was reduced by more
than a factor of 10 for 48.3 percent of the jobs. However, it is
seen that some jobs (�1:3%) with large Ews saw only
negligible (<1%) affect from timely staging. The reason for
this is that: 1) many jobs require large input data, so the
long duration of transfer increases the effective Ew; and
2) many jobs in our logs arrived in bursts, and timely
staging is forced to start transfers early to ensure all
necessary data is available and avoid staging errors.
Overall, the significantly reduced Ew for most jobs under
JIT staging shows that it can provide better resiliency
against storage system failures and costly restaging.

3.3.3 Effect of Job Startup Time Prediction

In this experiment, we randomly introduce up to 20 percent
variance in the batch queue prediction and the actual job
start-up time. Then, we simulate the time by which timely
staging will miss the actual job start-up, i.e., staging error.
Fig. 15 shows the distribution of staging error for different
prediction accuracies. The results show the dependence of
timely staging on the accuracy of batch queue prediction:
as the error in accuracy increases from 0 to 20 percent, the
number of jobs with no staging error reduces from 95
to 75 percent, i.e., by 21 percent. However, even with
increased prediction error, the number of jobs with
significant delays is much less than half (30.6 percent of
the jobs suffer a staging error of more than 1000 seconds).
Note that in this test, we assumed that the prediction error
remains constant, however, in real scenarios, the accuracy
is improved as the start-up time draws near, implying that
timely staging will have much improved performance than
studied in this case. Finally, the results show that the
approach can withstand some prediction errors, and with
improved predictions becoming available, can provide
better staging alternatives.

4 CONCLUSION

In this paper, we have presented the design and imple-
mentation of a timely staging framework to coincide input
data delivery with job startup. Our framework leverages

periodic job wait time estimates from a batch queue
prediction service, user-specified intermediate nodes, cloud
storage, and periodic network bandwidth measurements to
deliver input data on time. Our evaluation shows as much
as 91.0 percent reduction in staging times compared to
direct transfers, 75.2 percent reduction in wait time on
scratch, and 2.4 percent reduction in usage/hour. Thus, our
JIT staging solution is able to reconcile several key factors to
reduce the duration of scratch space consumption and the
exposure window, and adapt to volatility to deliver the data
on time, consequently improving HPC center serviceability.

ACKNOWLEDGMENTS

This research was sponsored by the LDRD Program, and
NCCS of ORNL, managed by UT-Battelle, LLC for the US
DOE under contract no. DE-AC05-00OR22725, and by the
US NSF Awards CCF-0746832, CNS-1016793, and CNS-
1016408.

REFERENCES

[1] “Large Hadron Collider,” http://lhc.web.cern.ch/lhc/, 2013.
[2] “Spallation Neutron Source,” http://www.sns.gov/, 2008.
[3] “Sloan Digital Sky Survey,” www.sdss.org, 2005.
[4] “Laser Intrfirom, Gravt.-Wave Obsrv,” http://www.ligo.caltech.

edu/, 2008.
[5] M. Gleicher, “HSI: Hierarchical Storage Interface for HPSS,”

http://www.hpss-collaboration.org/hpss/HSI/, 2011.
[6] W. Allcock, J. Bresnahan, R. Kettimuthu, and M. Link, “The

Globus Striped GridFTP Framework and Server,” Proc. ACM/IEEE
Conf. Supercomputing (Supercomputing), 2001.

[7] Near Real Time Modeling of Weather, Air Pollution, and Health
Outcome Indicators in New York City, http://cfpub.epa.gov/
ncer_abstracts/index.cfm/fuseaction/display.abstra ctDetail/
abstract/8649, 2012.

[8] R.A. Coyne and R.W. Watson, “The Parallel I/O Architecture of
the High-Performance Storage System (HPSS),” Proc. IEEE 14th
Symp. Mass Storage Systems (MSS), 1995.

[9] Nat’l Center for Biotech Info, http://www.ncbi.nlm.nih.gov/, 2013.
[10] Pbs Pro Technical Overview: Scheduling and File Staging, https://

secure.altair.com/sched_staging.html, 2008.
[11] Cluster Resources Inc., http://www.clusterresources.com/, 2008.
[12] T. Kosar and M. Livny, “Stork: Making Data Placement a First

Class Citizen in the Grid,” Proc. 24th Int’l Conf. Distributed
Computing Systems (ICDCS), 2004.

[13] J. Bent, D. Thain, A. Arpaci-Dusseau, R. Arpaci-Dusseau, and M.
Livny, “Explicit Control in a BADFS,” Proc. First Conf. Networked
Systems Design and Implementation (NSDI), 2004.

[14] Z. Zhang, C. Wang, S.S. Vazhkudai, X. Ma, G. Pike, J. Cobb, and F.
Mueller, “Optimizing Center Performance through Coordinated
Data Staging Scheduling and Recovery,” Proc. ACM/IEEE Conf.
Supercomputing (SC), 2007.

[15] H. Monti, A.R. Butt, and S.S. Vazhkudai, “Scratch as a Cache:
Rethinking HPC Center Scratch Storage,” Proc. 23rd Int’l Conf.
Supercomputing (ICS), 2009.

[16] “DMOVER: Scheduled Data Transfer for Distributed Computa-
tional Workflows,” http://www.psc.edu/general/software/
packages/dmover/, 2008.

1850 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 24, NO. 9, SEPTEMBER 2013

Fig. 15. The distribution of staging error under different batch queue
prediction accuracy.

Fig. 14. Size of exposure window for each job in the log.

[17] “TeraGrid,” Grid Infrastructure Group, http://www.teragrid.org/,
2013.

[18] D. Thain, S.S.J. Basney, and M. Livny, “The Kangaroo Approach to
Data Movement on the Grid,” Proc. IEEE 10th Int’l Symp. High
Performance Distributed Computing (HPDC), 2001.

[19] J. Plank, M. Beck, W. Elwasif, T. Moore, M. Swany, and R. Wolski,
“The Internet Backplane Protocol: Storage in the Network,” Proc.
Network Storage Symp., 1999.

[20] V. Bhat, S. Klasky, S. Atchley, M. Beck, D. Mccune, and M.
Parashar, “High Performance Threaded Data Streaming for Large
Scale Simulations,” Proc. IEEE/ACM Fifth Int’l Workshop Grid
Computing (Grid), 2004.

[21] P. Rizk, C. Kiddle, and R. Simmonds, “A Gridftp Overlay
Network Service,” Proc. IEEE/ACM Seventh Int’l Conf. Grid
Computing(Grid), 2007.

[22] G. Khanna, U. Catalyurek, T. Kurc, R. Kettimuthu, P. Sadayap-
pan, I. Foster, and J. Saltz, “Using Overlays for Efficient Data
Transfer over Shared Wide-Area Networks,” Proc. ACM/IEEE
Conf. Supercomputing, 2008.

[23] R. Wolski, N. Spring, and J. Hayes, “The Network Weather
Service: A Distributed Resource Performance Forecasting Service
for Metacomputing,” Future Generation Computing Systems, vol. 15,
no. 5 pp. 757-768, 1999.

[24] Nat’l Center for Computational Sciences, http://www.nccs.gov/,
2013.

[25] B. Schroeder and G. Gibson, “Disk Failures in the Real World:
What Does an MTTF of 1000,000 Hours Mean to you?,” Proc. Fifth
USENIX Conf. File and Storage Technologies (FAST), 2007.

[26] E. Pinheiro, W.-D. Weber, and L. André Barroso, “Failure Trends
in a Large Disk Drive Population,” Proc. Fifth USENIX Conf. File
and Storage Technologies (FAST), 2007.

[27] S. Shah and J.G. Elerath, “Reliability Analysis of Disk Drive
Failure Mechanisms,” Proc. Symp. Ann. Reliability and Maintain-
ability (RAMS), 2005.

[28] W. Smith, V. Taylor, and I. Foster, “Using Runtime Predictions to
Estimate Queue Wait Times and Improve Scheduler PERF,” Proc.
Job Scheduling Strategies for Parallel Processing (JSSPP), 1997.

[29] A. Downey, “Using Queue Time Predictions for Processor
Allocation,” Proc. Job Scheduling Strategies for Parallel Processing
(JSSPP), 1997.

[30] H. Monti, A.R. Butt, and S.S. Vazhkudai, “Reconciling Scratch
Space Consumption Exposure, and Volatility to Achieve Timely
Staging of Job Input Data,” Proc. IEEE Int’l Symp. Parallel and
Distributed Processing (IPDPS), 2010.

[31] B. Cohen, “BitTorrent Protocol Specification,” http://www.
bittorrent.org/protocol.html. May 2007.

[32] D. Kostic, A. Rodriguez, J. Albrecht, and A. Vahdat, “Bullet: High
b/w Data Dissemination Using an Overlay Mesh,” Proc. 19th ACM
Symp. Operating Systems Principles (SOSP), 2003.

[33] D. Kostic, A. Rodriguez, J. Albrecht, A. Bhirud, and A. Vahdat,
“Using Random Subsets to Build Scalable Net. Services,” Proc.
Fourth Conf. USENIX Symp. Internet Technologies and Systems
(USITS), 2003.

[34] S. Annapureddy, M.J. Freedman, and D. Mazires, “Shark: Scaling
File Servers via Cooperative Caching,” Proc. Second Conf.
Networked Systems Design and Implementation (NSDI), 2005.

[35] K. Park and V.S. Pai, “Scale and Performance in the CoBlitz Large-
File Distribution Service,” Proc. Third Conf. Networked Systems
Design and Implementation (NSDI), 2006.

[36] MS Azure, http://www.microsoft.com/windowsazure/, 2010.
[37] L. Peterson, T. Anderson, D. Culler, and T. Roscoe, “A Blueprint

for Introducing Disruptive Technology into the Internet,” Proc.
First Workshop Hot Topics in Networks (HotNets), 2002.

[38] C. Hsu and W. Feng, “A Power-Aware Run-Time System for High-
Performance Computing,” Proc. ACM/IEEE Conf. Supercomputing
(SC), 2005.

[39] Batch Queue Prediction, http://nws.cs.ucsb.edu/ewiki/nws.
php?id=Batch+Queue+Prediction, Sept. 2008.

[40] H. Monti, A.R. Butt, and S.S. Vazhkudai, “CATCH: A Cloud-
Based Adaptive Data Transfer Service for HPC,” Proc. IEEE Int’l
Symp. Parallel and Distributed Processing (IPDPS), 2011.

[41] J. Bester, I. Foster, C. Kesselman, J. Tedesco, and S. Tuecke,
“GASS: A Data Movement and Access Service for Wide Area
Computing Systems,” Proc. Workshop I/O in Parallel and Distributed
Systems, 1999.

[42] Bbcp, http://www.slac.stanford.edu/, 2010.

[43] Nccs User Support - Data Transfer, http://www.nccs.gov/
user-support/general-support/data-transfer/, 2010.

[44] “Windows Azure Pricing,” Microsoft, http://www.microsoft.
com/windowsazure/pricing/, June 2010.

[45] The Netflix Tech Blog, http://techblog.netflix.com/2010/12/
four-reasons-we-choose-amazons-clou d-as.html, 2012.

[46] J. Plank, “A Tutorial on Reed-Solomon Coding for Fault-Tolerance
in RAID-Like Systems,” Software - Practice and Experience, vol. 27,
no. 9 pp. 995-1012, 1997.

[47] W. Tang, N. Desai, D. Buettner, and Z. Lan, “Analyzing and
Adjusting User Runtime Estimates to Improve Job Scheduling on
the Blue Gene/P,” Proc. IEEE Int’l Symp. Parallel and Distributed
Processing (IPDPS), 2010.

Henry M. Monti received the BS degree in
computer science from George Mason Univer-
sity, Virginia, in 2006. He is currently working
toward the PhD degree in computer science
and applications at Virginia Polytechnic Institute
and State University. His research interests
include high-performance computing, distribu-
ted systems, and cloud computing. He is a
member of IEEE.

Ali R. Butt received the BSc (Hons) degree in
electrical engineering from the University of
Engineering and Technology Lahore, Pakistan,
in 2000 and the PhD degree in electrical and
computer engineering from Purdue University in
2006. At Purdue, he also served as the president
of the Electrical and Computer Engineering
Graduate Student Association for 2003 and
2004. He is an associate professor of computer
science at Virginia Tech. His research interests

include experimental computer systems, especially in data-intensive
high-performance computing (HPC) and the impact of technologies such
as massive multicores, cloud computing, and asymmetric architectures
on HPC. His current work focuses on I/O and storage issues faced in
modern HPC systems. He is a recipient of the NSF CAREER Award
(2008), an IBM Faculty Award (2008), an IBM Shared University
Research Award (2009), a Virginia Tech College of Engineering
“Outstanding New Assistant Professor” Award (2009), a best paper
award (MASCOTS 2009), and a NetApp Faculty Fellowship (2011). He
was an invited participant (2009) and an organizer (2010) for the NAE’s
US Frontiers of Engineering Symposium. He is a member of USENIX
and ASEE, and a senior member of the ACM and IEEE.

Sudharshan S. Vazhkudai received the doc-
torate degree from The University of Mississippi
in 2003 and performed his research at Argonne
National Laboratory. He is a research scientist in
the Computer Science and Mathematics Divi-
sion at Oak Ridge National Laboratory, a US
Department of Energy facility. In addition, he is
also a joint faculty associate professor at The
University of Tennessee. He is broadly inter-
ested in storage systems, HPC I/O architectures

and distributed computing.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

MONTI ET AL.: ON TIMELY STAGING OF HPC JOB INPUT DATA 1851

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

